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—— Can we attack a face detector?

Original Perturbed image P rtu bation
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Adversarial Perturbations:

e Imperceptible perturbations that change the neural
network output significantly

e Fast Gradient Sign Method (FGSM) [1]:
X=X +a-sign(V L(f,(X), ™))

e Prior works are in image classification [1], semantic
segmentation [2,3] and object detection [3]

e The attack in object detection is more difficult:

Need to ensure all region proposals associated with
the object/instance are successfully attacked

We are the first to study adversarial attack in sin-
gle-stage face detection:
e Single-stage detector:

Performs object classification and localization

simultaneously, e.g. YOLO and SSD. This work uses
the face detector, HR [4]
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—— Instance Perturbation Interference (IP1) Problem

IMage based Perturbation (IMP):

Existence of the IPI problem:

Number | Distance Attack
of Faces duccess
Rate (%)
1 40 100
40 51.5
9 160 56
240 63.9
64 40 18.3

(a)

\_

(b)
e The attack success rate drops when the number of faces increases

e \Vith the same number of faces, the attack success rate can be increased as the distances
among faces increase

e Following the FGSM, the perturbations are generated and applied w.r.t. the entire image
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——Results

—— Proposed Method: LIP
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Explanations of the IPIl problem:

e Our adversarial perturbation is
a 2D Gaussian distribution:

OL(fo(X,12,), —1)'5f9 (X1 )

VAot ),y = S B

impact to the neuron decision [0]

Localized Instance Perturbation (LIP):
Aim: eliminating the interfering perturbation

R, =C,-ViL, ,where C, (w,h)=-

0, otherwzse

o H = = = = =

e Perturbation cropping according to the instance ERF:
L(w,h)ee

’

In CNNs, the distribution of impact within
the Theorectical Receptive Field (TRF)
follows a 2D Gaussian distribution [6]:

Perturbations overlap with the
neighboring face ERF, which
might disrupt the attack

g (X,1,)
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e [he Effective Receptive Field (ERF) is a fraction of TRF, where pixels have significant

e Individual instance perturbation (processmg each instance separately): R = ZC VL,

i=1

OF QUEENSLAND

(AC AUSTRALTITA

THE UNIVERSITY §8 ECCV 2018 %

15seconds-Summary

European Conference
on Computer Vision E#ﬁ

Questions: Why existing adversarial perturbation methods are not effective when there

are multiple objects/instances?

Contributions:

1. IPI Problem: The interfering perturbations disrupt the adversarial perturbations generated

for the neighboring objects/instances

2. Explanations: Perturbations overlap with the neighboring object Effective Receptive Field

3. Method: We propose the Localized Instance Perturbation (LIP) that confines the per-

turbation inside the Effective Receptive Field of a target.

The detection results by the HR are shown in original and perturbed images. (Yel-

low: true positives; Red: false positives)

Evaluation on Synthetic Images:
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Evaluation on Face Detection Datasets:

. I-FGSM
Perturbations Sets None V= P (IP-A T LIP-H
Easy 924 | 46.2 | 30.1 28.2 | 26.5
Detection Rate (%) Medium | 90.7 | 50.7 | 34.7 | 32.2 | 31.1
Hard /7.3 | 459 | 293 | 23.6 | 26.6
Easy : 50.0 | 674 | 695 | 71.3
Attack Success Rate (%) | Medium - 44 1 61.7 | 64.5 | 65.7
Hard - 40.6 | 62.1 69.5 | 65.6

Evaluation on Object Detection Datasets:

Perturbations IMP LP
Average Recall 7.9 2.2
Average Precision 6.9 1.9




