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We are the first to study adversarial attack in sin-
gle-stage face detection:
● Single-stage detector:
  Performs object classification and localization 
simultaneously, e.g. YOLO and SSD. This work uses 
the face detector, HR [4]

Adversarial Perturbations:
● Imperceptible perturbations that change the neural 
network output significantly
● Fast Gradient Sign Method (FGSM) [1]:

● Prior works are in image classification [1], semantic 
segmentation [2,3] and object detection [3]
● The attack in object detection is more difficult:
 Need to ensure all region proposals associated with 
the object/instance are successfully attacked
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IMage based Perturbation (IMP):
● Following the FGSM, the perturbations are generated and applied w.r.t. the entire image

Existence of the IPI problem:

● The attack success rate drops when the number of faces increases
● With the same number of faces, the attack success rate can be increased as the distances 
among faces increase

Number 
of Faces 

Distance 

(pixels)  

Attack 
Success 
Rate (%) 

1 40 100 
 40 51.5 

9 160 56 
 240 63.9 

64 40 18.3 
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Localized Instance Perturbation (LIP):
Aim: eliminating the interfering perturbation
● Perturbation cropping according to the instance ERF:

● Individual instance perturbation (processing each instance separately):

Explanations of the IPI problem:  

●The Effective Receptive Field (ERF) is a fraction of TRF, where pixels have significant 
impact to the neuron decision [6]
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● Our adversarial perturbation is 
a 2D Gaussian distribution:
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In CNNs, the distribution of impact within 
the Theorectical Receptive Field (TRF) 
follows a 2D Gaussian distribution [6]:

Perturbations overlap with the 
neighboring face ERF, which 
might disrupt the attack

, where

 

ResultsResults

Evaluation on Synthetic Images:

Evaluation on Face Detection Datasets:

Evaluation on Object Detection Datasets:

0
20
40
60
80

100

1 4 9 16 25 36 81At
ta

ck
Su

cc
es

s
R

at
e

(in
%

)

Number of faces

IMP LP LIP-H

40

60

80

100

40 160 240
Distance (in pixels)

IMP LP LIP-H

Perturbations IMP LP 
Average Recall 7.9 2.2 
Average Precision 6.9 1.9 

 

Perturbations Sets None I-FGSM 
IMP LP LIP-A LIP-H 

Detection Rate (%) 
Easy 92.4 46.2 30.1 28.2 26.5 

Medium 90.7 50.7 34.7 32.2 31.1 
Hard 77.3 45.9 29.3 23.6 26.6 

Attack Success Rate (%) 
Easy - 50.0 67.4 69.5 71.3 

Medium - 44.1 61.7 64.5 65.7 
Hard - 40.6 62.1 69.5 65.6 

The detection results by the HR are shown in original and perturbed images. (Yel-
low: true positives; Red: false positives)
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Why existing adversarial perturbation methods are not effective when there 
are multiple objects/instances?

The interfering perturbations disrupt the adversarial perturbations generated 
for the neighboring objects/instances

Perturbations overlap with the neighboring object Effective Receptive Field

We propose the Localized Instance Perturbation (LIP) that confines the per-
turbation inside the Effective Receptive Field of a target.

Questions:

Contributions:
1. IPI Problem:

2. Explanations:

3. Method:
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