Using LIP to Gloss Over Single-Stage Face Detection Networks

Sigi Yang, Arnold Wiliem, Shaokang Chen and Brian C. Lovell The University of Queensland, Australia

Can we attack a face detector? -

Adversarial Perturbations:

 Imperceptible perturbations that change the neural network output significantly

Fast Gradient Sign Method (FGSM) [1]:

$$X^{adv} = X + \alpha \cdot sign(\nabla_x \ell(f_\theta(X), y^{true}))$$

• Prior works are in image classification [1], semantic segmentation [2,3] and object detection [3]

• The attack in object detection is more difficult:

Need to ensure all region proposals associated with the object/instance are successfully attacked

We are the first to study adversarial attack in single-stage face detection:

• Single-stage detector:

Performs object classification and localization simultaneously, e.g. YOLO and SSD. This work uses the face detector, HR [4]

References

[1] I. J. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. ICLR, 2015.

[2] J. H. Metzen, M. C. Kumar, T. Brox, and V. Fischer. Universal adversarial perturbations against semantic image segmentation. In ICCV, 2017.

[3] C. Xie, J. Wang, Z. Zhang, Y. Zhou, L. Xie, and A. Yuille. Adversarial examples for semantic segmentation and object detection. In ICCV, 2017. [4] P. Hu and D. Ramanan. Finding tiny faces. In CVPR, 2017.

[5] A. Kurakin, I. Goodfellow, and S. Bengio. Adversarial examples in the physical world. arXiv preprint arXiv:1607.02533, 2016.

[6] W. Luo, Y. Li, R. Urtasun, and R. Zemel. Understanding the effective receptive field in deep convolutional neural networks. In NIPS, 2016. [7] V. Jain and E. G. Learned-Miller. Fddb: A benchmark for face detection in

unconstrained settings. UMass Amherst Technical Report, 2010.

Acknowledgements

This work has been funded by Sullivan Nicolaides Pathology, Australia, and the Australian Research Council (ARC) Linkage Projects Grant LP160101797. Arnold Wiliem is funded by the Advance Queensland Early-Career Research Fellowship.

Number	Distance	Attack	
	Distance	Success	
OFFACES		Rate (%)	
1	40	100	
9	40	51.5	
	160	56	
	240	63.9	
64	40	18.3	

$$R_{m_i} = C_{e_i} \cdot \nabla_X L_{m_i} \text{, where } C_{e_i}(w,h) = \begin{cases} 1, (w,h) \in e_i \\ 0, otherwise \end{cases}$$

Why existing adversarial perturbation methods are not effective when there

The interfering perturbations disrupt the adversarial perturbations generated

We propose the Localized Instance Perturbation (LIP) that confines the per-

	Sets Easy	Sote Nono		I-FGSM			
		none	IMP	LP	LIP-A	LIP-H	
	Easy	92.4	46.2	30.1	28.2	26.5	
)	Medium	90.7	50.7	34.7	32.2	31.1	
	Hard	77.3	45.9	29.3	23.6	26.6	
	Easy	-	50.0	67.4	69.5	71.3	
ite (%)	Medium	I	44.1	61.7	64.5	65.7	
	Hard	-	40.6	62.1	69.5	65.6	

Perturbations	IMP	LP
Average Recall	7.9	2.2
Average Precision	6.9	1.9